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Abstract

The aim of the paper is to present a thermodynamically based concept for the analysis of defect evolution in continua

with microstructure. In classical models of continua with microstructure, balance laws for linear and angular mo-

mentum are formulated for macroforces and microforces, which can be called deformational macroforces and mi-

croforces. Characteristic feature of macrodefects and microdefects such as cracks and voids is the fact, that they can

migrate relative to the moving body and this relative motion of defects is caused by so-called con®gurational forces.

Therefore, in a continuum with microstructure and evolving macrodefects and microdefects we have to deal with de-

formational and con®gurational macroforces and microforces.

To formulate a reliable theory for material bodies with microstructure and migrating macrodefects and microdefects,

a continuum is considered, where each particle is equipped with an arbitrary number of deformable directors. We

distinguish then between directors undergoing a convective deformation leading to deformational (physical) micro-

forces, and directors describing a set of defects migrating relative to the underlying lattice, where this migration is

caused by con®gurational (material) microforces. For deformational and con®gurational macroforces and microforces

corresponding balance laws are presented and the macro- and micro-Eshelby stress tensors are derived.

Next, deformational and con®gurational heatings and entropy ¯uxes are introduced and the ®rst and second law of

thermodynamics for the microcontinuum with evolving macrodefects and microdefects are formulated.

Finally, we present the most general form of the ®rst order constitutive equations satisfying the second law of

thermodynamics for migrating defects. Ó 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Continua with microstructure; Evolving defects; Con®gurational forces

1. Introduction

In lifetime oriented design of engineering structures a crucial role plays the analysis of defects together
with a determination of the ``driving'' forces governing their evolution in the material. The term defect is
used here to describe the observed departure from uniformity and inhomogeneity of the material on various
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scales. For example, on a microscale, there are point defects and dislocations in a crystal lattice, there can
be shearbands, voids and cracks on a microlevel, and on the macrolevel shearbands, cavities and cracks can
be observed. Here, we have to mention also phase boundaries separating martensite regions from their
austenit twins and vice versa. Defects on various scales can alter their con®guration and evolve through the
material. Dislocations can glide and climb, point defects di�use, cavities can change their shape, voids and
cracks can evolve more or less independent of the motion of the surrounding mass, and interfaces can
migrate. However, the motion of defects is entirely di�erent from the motion of material bodies and sub-
bodies in the physical space. Also the forces causing the evolution of defects are di�erent from forces, which
arise in response to motion and deformation of bodies in the physical space and which therefore can be
called ``deformational forces''. Since the forces on defects are associated with con®gurational changes in the
structure of material bodies causing these changes, they are called ``con®gurational forces''.

The fundamental concept of forces acting on defects in the material has its origin in the paper of Peach
and Koehler (1950) on dislocations in crystalline material and the papers of Eshelby (1951, 1970) devoted to
cracks and inclusions in linear elastic material.

During the last couple of years con®gurational forces on macrodefects attracted increasing interest with
the aim to develop appropriate fracture and damage theories for the analysis of engineering structures. For
example, the con®gurational force on a singular moving crack was investigated in Stumpf and Le (1990,
1992), Maugin and Trimarco (1992) and Maugin (1993, 1995), where further references can be found. In
these papers forces associated with defects were derived as derivatives of the energy of the body with respect
to certain tensors characterizing con®gurational changes of defects.

An approach to determine con®gurational forces on macrodefects, in some sense complementary to the
above mentioned kinematical approach, was developed by Gurtin (1994, 1995) (see also Gurtin and Podio-
Guidugli, 1992, 1996). In this concept con®gurational forces are regarded as primitive variables acting on
so-called test regions, that can move independently of the motion of the body, where the con®gurational
forces have to satisfy their own law of balance. GurtinÕs considerations are based on the classical concept of
continuous bodies in the sense of Cauchy, where the continuum exists of point-like particles having mass,
inertia and supporting body and contact forces, but no internal structure. The concept of Gurtin was
successfully applied by Fried and Gurtin (1996) and Cermelli and Fried (1997) to determine the motion of
the interface in two-face materials.

More general continuous bodies, whose material particles may have an orientation and which are able to
sustain couples and higher order forces, were extensively studied in the past with an attempt to provide an
improved description of real properties of materials. Various theories of this kind are discussed in the
literature, e.g. Toupin (1964), Ariman et al. (1973), Beatty and Cheverton (1976), Capriz and Podio-
Guidugli (1977). More recently, Naghdi and Srinivasa (1993, 1994) and Le and Stumpf (1996a,b,c) pre-
sented nonlinear dislocation theories and models of ®nite elastoplasticity with microstructure, where the
latter is based on the assumption of the multiplicative decomposition of the total deformation gradient into
elastic and plastic parts ®rst introduced by Bilby et al. (1955) and Kr�oner (1960).

Con®gurational forces and their balance in the presence of continua with microstructure are investigated
in Maugin (1997, 1998) for an inhomogeneous±heterogeneous system and for polar elasticity, and in
Stumpf and Saczuk (2000) for a dissipative oriented continuum using a variational approach with six-
dimensional kinematics and manifold structure as point of departure.

Following the idea of Gurtin, who introduced the concept of con®gurational macroforces as primitive
variables satisfying their own balance law, we present in this paper a thermodynamically based framework
for the modelling of continua with microstructure and evolving macrodefects and microdefects. It is shown
that one is led to con®gurational macroforces and microforces, which have to satisfy their own con®gu-
rational macrobalance and microbalance laws. Taking into account that evolving defects have inertia and
that they are dissipative, we generalize the classical ®rst and second law of thermodynamics by taking into
account the contributions of evolving macrodefects and microdefects.
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In Section 2 continuous bodies with microstructure are considered. Following Ericksen and Truesdell
(1958), each particle of the continuum is equipped with a ®nite number of vectors. The complete set of
balance laws of mass, macromomentum, micromomentum, macroangular momentum and, within a ther-
modynamical theory, the balance law of energy and the principle of irreversibility are derived. Using the
standard procedure of localization the corresponding dynamic ®eld equations and the local form of the
energy balance and of the irreversibility condition are obtained.

For continua with microstructure and macrodefects and microdefects GurtinÕs concept of evolving test
region is applied in Section 3 to derive con®gurational macroforces and microforces and e�ective forces.
These forces are characterized by a suitable form of the mechanical power formulated for an arbitrary
evolving test region.

In Section 4, the intrinsic con®gurational (inhomogeneity) forces and con®gurational momenta are in-
troduced and the balance laws for con®gurational forces are formulated. Next, assuming that the total
mechanical power for an evolving test region must be invariant with respect to the reparametrization of the
bounding surface the general form of the Eshelby tensor for continua with microstructure and evolving
defects is derived. In Section 5 the ®rst and second law of thermodynamics are formulated taking into
account macro- and micro-heatings and the associated entropy ¯uxes of deformational and con®gurational
type.

In Section 6, the general form of the ®rst order constitutive equations consistent with the previously
derived laws of mechanics and thermodynamics is presented.

Finally, we want to point out that the investigations of this paper should be continued in two directions,
where a restriction to continua with special microstructure seems to be meaningful (e.g. Cosserat continua,
continua with three deformable directors that can be interpreted as orientation of the crystal lattice):

(i) To take into account also distinguished cracks on singular surfaces (lines in the two-dimensional case)
and to compare the results with those discussed in the literature (e.g. Freund, 1990; Hertzberg, 1996; Le
et al., 1999).
(ii) To use the general model of structured continua with evolving macrodefects and microdefects pre-
sented in this paper in order to derive corresponding phenomenological damage concepts for elastic
and elastic±plastic material behavior and to compare them with well-established models in the literature
(e.g. Gurson, 1977; Krajcinovic and Fonseka, 1981; Kachanov, 1986; Simo and Ju, 1987; Chaboche,
1988a,b; Krajcinovic, 1989; Hansen and Schreyer, 1994; Lubarda et al., 1994; Lubarda and Krajcinovic,
1995) by assuming the existence of damage and/or plastic potentials.

2. Thermodynamics of continua with microstructure

In this section we recall the basic laws of thermodynamics for various models of continua with micro-
structure. The notation and convention used subsequently are essentially standard, and hence they will be
not discussed in details here (see e.g. Green and Naghdi, 1995).

In the simplest geometric description, a material body B is de®ned as a continuum consisting of point-
like particles, which at each time instant are continuously distributed over a region of space E (the three-
dimensional Euclidean space, whose translation space is denoted by E). Such regions are called spatial
con®gurations of the body. For analytical purposes it is convenient to ®x a particular con®guration B � E,
called the reference con®guration of the body, and to describe its motion and deformation with respect to
this con®guration. Then, X 2 B is a place occupied by a generic particle X 2 B in the reference con®gu-
ration, and the macroscopic motion of the body relative to B is described by a mapping

v : B�T! E; �X; t� ! x � v�X; t� �2:1�
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which carries each point X 2 B into its spatial place x 2 B�t� in the actual con®guration B�t� � v�B; t� at
time instant t 2T.

Various generalizations of this model have been proposed in the literature by equipping each material
particle with additional structure. Most of these generalizations can be regarded as special cases of the
model ®rst proposed by Ericksen and Truesdell (1957). This model consists of the classical concept of the
body B, each particle of which is additionally equipped with a ®nite number N of vectors, called directors.
In the reference con®guration, the directors assigned to a place X 2 B are denoted by DA�X�,
A � 1; 2; . . . ;N . In general, there may be any number of vectors, even an in®nite countable number.

Since the model of material body with microstructure is richer than the classical one, the description of
motion consists of two parts. The directors in the current con®guration assigned to every place x 2 B�t� are
denoted by �dA�x; t�. Since x � v�X; t�, we may write in the referential description

dA�X; t� � �dA�v�X; t�; t�; A � 1; 2; . . . ;N : �2:2�
The directors may change their length and orientation during the motion of the body through the physical
space but they are carried by the material particles to which they are assigned.

The macrovelocity ®eld v�X; t� and the microvelocity ®elds wA�X; t� (the director velocities, as they are
often called in the literature) are de®ned by

v�X; t� � _x�X; t�; wA�X; t� � _dA�X; t�; A � 1; 2; . . . ;N : �2:3�
Moreover, the macro- and the director deformation gradients are given by

F�X; t� � rv�X; t�; FA�X; t� � rdA�X; t�; A � 1; 2; . . . ;N : �2:4�
If no special restrictions are imposed on the directors and their motion, the model of the continuous

material body characterized in this way is commonly called Cosserat continuum with N deformable di-
rectors.

The physical meaning, which can be associated with the microstructure described by any number of
deformable directors, will depend on the intended application of the theory. In general, the macromotion
and micromotion are to some extent independent of each other. Accordingly, the classical balance laws of
continuum mechanics do not su�ce and they must be modi®ed and enlarged by additional postulates.

Local theories of continuum mechanics are further based on the assumption that all physical properties
of the material body can be represented as ®elds, and that the laws of motion are valid for every part of the
body regardless of its size. In this context, a part of a body P � B, called sub-body, is understood as
consisting always of the same material particles. Such a sub-body moves together with the body. In the
reference con®guration, the sub-body P occupies a ®xed sub-region P � B having a time independent
boundary oP . In the current con®guration, it occupies the region P �t� � B�t�, which is the image of P under
the deformation mapping, i.e. P�t� � v�P ; t� at every time instant t 2T.

Early formulations of continua with microstructure were essentially based on variational arguments as in
ToupinÕs (1964) theory of oriented hyperelastic materials or in the theory of liquid crystals by Ericksen
(1961). Subsequently, their approach was re®ned and the basic laws of mechanics and thermodynamics
valid for all material bodies were formulated and separated from the speci®c constitutive equations that
de®ne particular classes of materials (see e.g. Ericksen and Truesdell, 1958; Gurtin and Podio-Guidugli,
1992; Green and Naghdi, 1995). In the general case of a material body with any number of directors, the
complete set of physical balance laws consists of (e.g. Green and Naghdi, 1995):

Balance of mass

d

dt

Z
P

qdv � 0; �2:5�

Balance of macro-linear momentum
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d

dt

Z
P

pdv �
Z

P
f dv�

Z
oP

Tn da; �2:6�

Balance of micro-linear momentum (A � 1; 2; . . . ;N )

d

dt

Z
P

pAdv �
Z

P
�ÿkA � fA�dv�

Z
oP

TAnda: �2:7�

The balance law of macromomentum (2.6) has the same form as in the classical theory of continuum
mechanics with all dynamic variables having their standard meaning: p�X; t� is the referential macromo-
mentum density, f�X; t� is the external body force and T�X; t� denotes the ®rst Piola±Kirchho� stress tensor.
The balance law of macromomentum preserves its form in every theory of generalized continua. Truely
new aspects of the theory are the additional balance laws of micromomentum (2.7). The new mechani-
cal variables appearing in Eq. (2.7), not existing in the classical theories, are commonly named as
follows:

pA(X, t) ± micromomenta,
fA�X; t� ± external microbody forces,
kA�X; t� ± intrinsic microbody forces,
TA�X; t� ± microstress tensors (of ®rst Piola±Kirchho� type).

The balance laws (2.5)±(2.7) must be supplemented by a suitable form of the balance of macro-angular
momentum, where two classes of theories have to be distinguished. In the ®rst class of theories it is assumed
that microforces do not contribute to the balance of angular momentum, in which case this law takes the
classical form

d

dt

Z
P

x� pdv �
Z

P
x� f dv�

Z
oP

x� Tn da: �2:8�

The other class of theories is based on the assumption that there is a coupling between microforces and
macroforces, in which case the balance law (2.8) has to be replaced by

d

dt

Z
P
�x� p� dA � pA�dv �

Z
P
�x� f � dA � fA�dv�

Z
oP
�x� Tn� dA � TAn�da: �2:9�

In Eq. (2.9) and throughout the paper, the summation convention is applied to the diagonally repeated
indices A;B � 1; 2; . . . ;N .

The macro- and micro-momenta are assumed in the form

p � qv; pA � qaABwB; �2:10�
where q�X� is the referential mass density, and aAB�X� are the microinertia coe�cients, which are assumed
to be time independent and to satisfy the following symmetry conditions: aAB � aBA for all A;B �
1; 2; . . . ;N .

Within purely mechanical theories, the balance laws (2.5)±(2.7) and (2.8) or (2.9) constitute the complete
set of postulates, which are needed to determine the mechanical behavior of the material body with N
deformable directors. Within thermodynamical theories, the body is further assumed to be equipped with
thermal properties consistent with the balance law of energy and the principle of irreversibility. The balance
law of energy is assumed in the form

d

dt

Z
P

qedv
�

� K�P; t�
�
� P�P; t� �

Z
P

qr dvÿ
Z

oP
q � nda; �2:11�
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where K�P; t� and P�P; t� denote the kinetic energy and the mechanical power, respectively. Moreover,
e�X; t� is the speci®c internal energy (the internal energy measured per unit mass), r�X; t�, the heat ab-
sorption and q�X; t� denotes the heat ¯ux vector.

If the macromomentum and the micromomenta are assumed in the form (2.10), then the kinetic energy is
given by

K�P; t� � 1
2

Z
P

q�v � v� aABwA � wB�dv: �2:12�

In Eq. (2.11) the mechanical power is de®ned by

P�P; t� �
Z

P
�f � v� fA � wA�dv�

Z
oP
�Tn � v� TAn � wA�da: �2:13�

While the form (2.11) of the energy balance is commonly accepted in the literature of continuum
thermodynamics, there are some disagreements as the second law of thermodynamics is concerned. Al-
though di�erent forms of this law were proposed in the literature, they all can be written in the form

d

dt

Z
P

qgdv P
Z

P
qsdvÿ

Z
oP

j � nda; �2:14�

where g�X; t� denotes the speci®c entropy (measured per unit mass), while s�X; t� and j�X; t� stand for the
source and ¯ux of entropy (measured per unit mass and unit area). There is no general agreement in
the literature, however, what precise form s�X; t� and j�X; t� should have. In general, they are taken in the
form

s�X; t� � r�X; t�
h�X; t� ; j�X; t� � q�X; t�

h�X; t� �2:15�

in which case the second law of thermodynamics (2.14) takes the form of the Clausius±Duhem inequality.
The common ratio h�X; t� is the absolute temperature, which by additional assumption is strictly positive,
i.e. h�X; t� > 0.

If su�cient regularity assumptions are presumed, the local form of the thermomechanical balance laws
can be obtained by standard procedure. By virtue of Eq. (2.5), the referential mass density is time inde-
pendent, _q � 0, so that the balance law of mass is identically satis®ed. The standard procedure of local-
ization applied to the mechanical balance laws (2.6) and (2.7) yields the following dynamic ®eld equations:

Equilibrium equation of macroforces

divT� f � _p; �2:16�
Equilibrium equations of microforces

divTA ÿ kA � fA � _pA; A � 1; 2; . . . ;N : �2:17�
If the balance law of angular momentum is taken in the form (2.8), then we obtain the equilibrium equation
of macrocouples

TFT ÿ FTT � 0 �2:18�
which is just the assertion that the true (Cauchy) stress tensor must be symmetric. In the more general case,
when the balance law of angular momentum is taken in the form (2.9) its local form reads

TFT ÿ FTT � dA ^ kA � TAFT
A ÿ FA�TA�T � 0: �2:19�

Here a ^ b � a
 bÿ b
 a is the standard notation for the exterior product of any two vectors, and 

denotes the tensor product of two vectors.
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The net working (the total power expanded) W�P; t� for every sub-body P is de®ned by

W�P; t� � P�P; t� ÿ _K�P; t�; �2:20�
and, in view of Eqs. (2.12) and (2.13), is given by

W�P; t� �
Z

P
f�f ÿ _p� � v� �fA ÿ _pA� � wAgdv�

Z
oP
�Tn � v� TAn � wA�da: �2:21�

Moreover, under the assumption that the balance laws (2.6) and (2.7) hold, it can be shown that

W�P; t� �
Z

P
rdv; r � T � _Fÿ kA � wA � TA � _FA; �2:22�

where r�X; t� is the stress power density measured per unit volume of the reference con®guration.
With the use of Eq. (2.20) the balance law of energy (2.11) can be rewritten in the form

d

dt

Z
P

qedv �W�P; t� �
Z

P
qr dvÿ

Z
oP

q � nda: �2:23�

Then by virtue of Eq. (2.22), the local form of the energy balance is obtained as

q _e � r� qr ÿ divq: �2:24�
The principle of irreversibility (second law of thermodynamics) (2.14) together with the assumptions (2.15)
yields

q _gP qhÿ1r ÿ div�hÿ1q�: �2:25�
Introducing next the free energy function

w�X; t� � e�X; t� ÿ h�X; t�g�X; t�; �2:26�
the reduced dissipation inequality implied by Eq. (2.25) takes the form

_w� _hgÿ r� hÿ1q � rh6 0: �2:27�
The set of Eqs. (2.16)±(2.27) has to be completed by a suitable set of constitutive equations.

In most problems of continuum thermomechanics, the body force f, the director body forces fA and the
heat absorption r are speci®ed as part of the data. Then, the ®rst Piola±Kirchho� macrostress tensor T, the
director stress vectors kA and the microstress tensors TA, the heat ¯ux vector q, the internal energy e (or,
equivalently, the free energy w) and the entropy g must be speci®ed in terms of the history of macromotion
v and micromotion described by the directors dA and the temperature h.

3. Evolving defects and con®gurational forces

In this section we want to investigate defects on the macrolevel and microlevel migrating relative to the
moving body, where the defect evolution is caused by con®gurational macroforces and microforces. We will
follow Gurtin (1994, 1995), who introduced the concept of an evolving nonmaterial test region to char-
acterize con®gurational macroforces and evolving macrodefects.

In the reference con®guration B of the body, an evolving test region is de®ned as a closed and simply
connected subset R�t� � B, whose boundary surface oR�t� evolves smoothly with time (Fig. 1). The test
region should not be confused with a sub-body, that occupies in the reference con®guration the ®xed region
P � B, representing a part of the body and having the time independent boundary oP . A test region is not a
®xed part of the body, but can migrate through the reference con®guration B of the body.
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For a test region R�t�, n�X; t� will denote the outward normal to the boundary surface oR�t�, u�X; t� the
velocity of oR�t� and u�X; t� its normal component, i.e. the velocity in the direction of n�X; t�

u�X; t� � u�X; t� � n�X; t�: �3:1�
When confusion can arise we write noR�t��X; t� for the outward normal to oR�t�, while keeping the notation
n�X� for the outward normal to the boundary oP of any sub-body. If the boundary surface oR�t� is de-
scribed in the parametric form X � X�n; t�, where n � �na�, a � 1,2, are surface coordinates, then the ve-
locity of a generic point of oR�t� is de®ned by

u�n; t� � d

dt
X�n; t�jn�const:: �3:2�

However, the velocity u�X; t� depends on the choice of the local parametrization of oR�t�, and only the
normal component u�X; t� is parametrization independent. In the referential description, the motion of a
body is described by a mapping x � v�X; t�, and the current con®guration of the body at time instant t is
de®ned by B�t� � v�B; t�. Then, for the evolving test region R�t� � B we set R0�t� � v�oR�t�; t�. Moreover,
for oR�t� given in the parametric form X � X�n; t�, the boundary surface oR0�t� � v�oR�t�; t� of the test
region evolving in the current con®guration is described by

x�n; t� � v�X�n; t�; t�; �3:3�
and the induced velocity of a generic point at oR0�t� is de®ned by

û�n; t� � d

dt
x�n; t�jn�const:: �3:4�

From the chain rule applied to Eq. (3.4) we then have

û�v�X; t�; t� � v�X; t� � F�X; t�u�X; t�; �3:5�
where the material velocity ®eld v(X, t) and the deformation gradient F(X, t) of the moving body are de®ned
in Eqs. (2.3) and (2.4), respectively.

The evolving test region R�t� � B is regarded as a region containing continuously distributed defects in
the body, and since the motion of the boundary oR(t) in B represents a kinematical process independent of
the motion of the material particles, the con®gurational forces can be introduced through the power ex-
pended on oR(t). In other words, for oR(t) to evolve smoothly with the velocity u(X, t), there must exist a
con®gurational stress ®eld C�X; t� that acts on oR(t) and governs its evolution. Thus R(t) may contain
structural defects, and the con®gurational traction associated with Cn represents then the resultant of the
total force exerted on these defects by that part of B external to R(t). By de®nition, the con®gurational
stresses expend power by the velocity u(X, t) so that its working on R(t) is

Fig. 1. Test region in the reference and actual con®guration of the body.
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Z
oR�t�

Cn � uda: �3:6�

For an evolving test region R(t), the deformational traction Tn should act on the velocity û�x; t�. Hence, the
working on oR�t� of the deformational stress has the formZ

oR�t�
Tn � û da: �3:7�

Besides the deformational surface force tn � Tn we have to take into account the external body force f.
Correspondingly, the system of con®gurational forces consists of the con®gurational surface force cn � Cn

and the intrinsic con®gurational (inhomogeneity) force f�X; t�. However, unlike the external body force f,
the intrinsic con®gurational force f does not contribute to the power expended on R(t). Accordingly, in
view of Eqs. (3.6) and (3.7) the power expended on R�t� can be written as

P�R�t�� �
Z

R�t�
f � vdv�

Z
oR�t�
�Tn � û� Cn � u�da: �3:8�

If the body has a microstructure described by N deformable directors associated with every material
particle, the kinematics of an evolving test region is richer than in GurtinÕs macrotheory. In fact, the di-
rectors DA�X� associated with every material point X 2 B are time independent. However, they become time
dependent when considered at the boundary surface oR�t� of the evolving test region R�t� � B. Assuming
that oR�t� is given in the parametric form X � X�n; t�, we have

DA�n; t� � DA�X�n; t��; A � 1; 2; . . . ;N : �3:9�
Denoting by D�A�n; t� the time derivative of DA�X� while keeping n � const: and making use of Eq. (3.2) we
have

D�A�n; t� � rDA�n; t�X��n; t� � rDA�n; t�u�n; t�: �3:10�
It follows that for the body with microstructure every point at the boundary of the evolving test region is
characterized, aside of u�X; t�, by N velocity vectors

uA�X; t� � D�A�X; t� � GA�X; t�u�X; t�; GA�X; t� � rDA�X; t�: �3:11�
It is further seen that these velocity vectors are entirely determined by u�X; t� and the referential gradients
GA of the directors. Thus u�X; t� and GA de®ne completely the evolution of the microstructure at the
boundary oR�t� of the evolving test region R�t�.

We next need to derive the evolution of the microstructure in the current con®guration B(t) of the body.
To this end, the directors dA�x; t� in B�t�, when considered at the boundary surface oR0�t� � v�oR�t�; t� of the
evolving test region, are written as

dA�n; t� � dA�x�n; t�; t�; �3:12�
where x�n; t� is de®ned by Eq. (3.3). The time derivative d�A�n; t� of Eq. (3.12) is obtained by using the chain
rule as

d�A � otdA � �grad dA�û: �3:13�
Further, taking into account Eq. (3.5) we have

d�A � otdA � �grad dA��v� Fu� � otdA � �graddA�v� �graddA�Fu: �3:14�
The material time derivative _dA�y; t� of the directors in the current con®guration is de®ned by

wA � _dA � otdA � �graddA�v; �3:15�
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and from the chain rule we have

rdA � �graddA�F; �3:16�
where F�X; t� denotes the macrodeformation gradient. Substituting Eq. (3.15) into Eq. (3.13) and making
use of Eq. (3.14) leads to

ûA � d�A � _dA � �rdA�u � wA � FAu; FA � rdA: �3:17�
Thus the migration of the test region in the current con®guration of the body is completely determined by
the velocity vectors û and ûA, A � 1; 2; . . . ;N .

Within theories of continua with microstructure, the response of a body to motion and deformation is
described by standard forces and director forces consistent with the fundamental laws of mechanics pre-
sented in Section 2. In order to introduce the concept of con®gurational forces for continua with micro-
structure, we ®rst note that the boundary oR�t� of the evolving test region is characterized by the velocity
u�X; t� and structural velocities uA�X; t�, while for continua without microstructure only the velocity u�X; t�
exists. Thus, in the case of continua with microstructure, the working equation (3.6) must be replaced by the
more general expressionZ

oR�t�
�Cn � u� CAn � uA�da; �3:18�

which represents the working of the con®gurational macrostress tensor C�X; t� and the con®gurational
microstress tensors CA�X; t�, A � 1; 2; . . . ;N , at the boundary oR�t�.

Within continua with microstructure, the working of the deformational stresses and deformational di-
rector stresses on oR�t� is given by (corresponding to the boundary term in the expression for the me-
chanical power (2.13))Z

oR�t�
�Tn � û� TAn � ûA�da: �3:19�

Moreover, there are external body macroforce f�X; t� and microforces fA�X; t�, which must be taken into
account when considering the mechanical power expended on R�t�. There will be also intrinsic con®gu-
rational (inhomogeneity) macroforce f�X; t� and intrinsic con®gurational microforces fA�X; t�. However,
like the intrinsic microforces kA�X; t�, neither f�X; t� nor fA�X; t� contribute to the power expended on R�t�,
which is given by

P�R�t�� �
Z

R�t�
�f � v� fA � wA�dv�

Z
oR�t�
�Tn � û� TAn � ûA � Cn � u� CAn � uA�da: �3:20�

Using Eqs. (3.5) and (3.17) we obtain

P�R�t�� �
Z

R�t�
�f � v� fA � wA�dv�

Z
oR�t�
fTn � �v� Fu� � TAn � �wA � FAu� � Cn � u� CAn �GAugda:

�3:21�
We can rewrite Eq. (3.21) in the form

P�R�t�� �
Z

R�t�
�f � v� fA � wA�dv�

Z
oR�t�

Tn � v� � TAn � wA � FTT
ÿ � C� FT

ATA �GT
ACA�n � u	da:

�3:22�
In the case of continua without microstructure, we have wA � 0, GA � FA � 0, and the mechanical power
(3.22) reduces to the form presented by Gurtin (1995). For a stationary test region, u � 0, expression (3.22)
leads to the classical form of the expended power of contact forces (2.13).
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4. Con®gurational inertia and balance laws of con®gurational forces

In GurtinÕs approach con®gurational forces are viewed as basic primitive objects which must be con-
sistent with their own law of balance. Cermelli and Fried (1997) noted furthermore that although evolving
defects have no mass, they have their own inertia. In an e�ort to account properly for con®gurational
inertia, they slightly modi®ed GurtinÕs approach by assuming that besides the con®gurational stress tensor
C�X; t� and the intrinsic con®gurational force f�X; t�, there should exist a con®gurational momentum
p�X; t�. Then, for continua without microstructure, they postulated the following local form of the con-
®gurational balance law:

divC� f � _p: �4:1�
In this section we shall generalize GurtinÕs and Cermelli and FriedÕs approach for continua with arbitrary
microstructure.

To describe problems where the microstructure of the body can undergo con®gurational changes due to
microdefects migrating relative to the underlying lattice, we have introduced in the previous section the
con®gurational microstress tensors CA�X; t� and con®gurational intrinsic forces fA�X; t�. To account for the
inertia of evolving defects in the body with microstructure we further assume that, besides the con®gura-
tional macromomentum p�X; t�, there should exist con®gurational micromomenta pA�X; t�, A � 1; 2; . . . ;N .
Taking into account that deformational and con®gurational balance laws can be derived by variation of a
Lagrangian functional formulated within a materio-physical manifold (see e.g. Stumpf and Saczuk, 2000),
we postulate the following form of the microbalance law:

divCA � fA � _pA; A � 1; 2; . . . ;N : �4:2�
The con®gurational balance laws, which merely assert that the total con®gurational force be balanced

over each part of the body, are supplemental laws to be imposed in addition to the standard balance laws of
the classical theory, with the understanding that they degenerate to an identity (in fact, equivalent to the
linear momentum balance) in the absence of con®gurational changes of the body.

By virtue of the transport theorem for the evolving test region

d

dt

Z
R�t�

wdv �
Z

R�t�
_wdv�

Z
oR�t�

uwda �
Z

R�t�
_wdv�

Z
oR�t�
�w
 u�n da �4:3�

for any ®eld w�X; t�, where u � u � n denotes the normal velocity of the boundary surface oR�t�, the con-
®gurational balance laws (4.1) and (4.2) for every test region R�t�migrating in the reference con®guration of
the body are equivalent to the following postulates:Z

R�t�
fdv�

Z
oR�t�
�C� p
 u�nda � d

dt

Z
R�t�

pdv;Z
R�t�

fA dv�
Z

oR�t�
�CA � pA 
 u�nda � d

dt

Z
R�t�

pA dv: �4:4�

Accordingly, the total mechanical power exerted on the test region R�t� is given by

W�R�t�� �
Z

R�t�
�f � v� fA � wA�dv�

Z
oR�t�
f�T� p
 u�n � û� �TA � pA 
 u�n � ûAgda

�
Z

oR�t�
f�C� p
 u�n � u� �CA � pA 
 u�n � uAgda: �4:5�

Taking into account that the ®elds û and ûA are de®ned by Eqs. (3.5) and (3.17), respectively, the total
mechanical power (4.5) can be rewritten in the form
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W�R�t�� �
Z

R�t�
�f � v� fA � wA�dv�

Z
oR�t�
f�T� p
 u�n � v� �TA � pA 
 u�n � wA � �Hn� uh� � ugda;

�4:6�
where the tensor H�X; t� and the vector h�X; t� are de®ned by

H � FTT� FT
ATA � C�GT

ACA;

h � FTp� FT
ApA � p� FT

ApA:
�4:7�

For the evolving test region there is no intrinsic material description of its boundary oR�t�. Changes in
parametrization of oR�t� a�ect the tangential component of its evolution velocity u�x; t�, but leaves its
normal component u�x; t� unaltered. In e�ect, invariance of the total mechanical power (4.6) under the
change of reparametrization of oR�t� is equivalent to the requirement that

�Hn� uh� � s � 0 �4:8�
on oR�t� for all tangential vector ®elds s along the evolving boundary oR�t�. Thus the expression �Hn� uh�
must be parallel to the normal vector n of oR�t�, and since it is arbitrary, we obtain

Hn� uh � pn; �4:9�
where the scalar ®eld p�x; t� can be considered as con®gurational tension. By virtue of Eq. (4.9) the total
power (4.6) expended on R�t� is given by the expression

W�R�t�� �
Z

R�t�
�f � v� fA � wA�dv�

Z
oR�t�
fTn � v� TAn � wA � u�p � v� pA � wA � p�gda �4:10�

which is invariant with respect to the reparametrization of oR�t�. Moreover, the identity (4.9) must hold for
all test regions R�t� with an evolution of their boundaries oR�t� being completely determined by the normal
vector n and the normal velocity u. In other words, Eq. (4.8) must hold for any choice of n and u. This
implies that h is proportional to n for any n. Thus we have

h � FTp� FT
ApA � p�GT

ApA � 0; �4:11�
and consequently

Hn � pn: �4:12�
From Eq. (4.11) it follows that the con®gurational momenta p and pA are determined by the relation

p�GT
ApA � ÿ�FTp� FT

ApA�; �4:13�
and from Eq. (4.12) follows that the con®gurational stress tensors are given by

FTT� FT
ATA � C�GT

ACA � p1; �4:14�
where 1 denotes the unit tensor.

The physical meaning of the con®gurational tension p�x; t� can be observed using the second law of
thermodynamics, which reduces within a purely mechanical theory to

d

dt

Z
R�t�

qwdv6W�R�t��: �4:15�

By virtue of the transport theorem (4.3), the inequality (4.15) can be rewritten in the formZ
R�t�

qwdv6W�R�t�� ÿ
Z

oR�t�
qwn � uda: �4:16�
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Having in mind that the total mechanical power is given by Eq. (4.10) the requirement of invariance of
(4.16) with respect to the reparametrization implies that the con®gurational tension p�X; t� is given by

p � qwÿ 1
2
q�v � v� aABwA � wB�: �4:17�

Substituting now Eq. (4.17) into Eq. (4.14) we ®nally obtain

FTT� FT
ATA � C�GT

ACA � fWÿ 1
2
q�v � v� aABwA � wB�g1; �4:18�

where W � qw denotes the free energy function measured per unit volume of the reference con®guration of
the body. The relation (4.18), which can be rewritten in the form

C�GT
ACA � fWÿ 1

2
q�v � v� aABwA � wB�g1ÿ �FTT� FT

ATA�; �4:19�
yields a generalization of the classical Eshelby relation. Indeed, as special case of a continuum without
microstructure we have

C � �Wÿ 1
2
qv � v�1ÿ FTT �4:20�

leading in the quasi-static case to

C � W1ÿ FTT �4:21�
representing the classical Eshelby tensor. It is important to note here that the generalized Eshelby relation
(4.19) and the special cases (4.20) and (4.21) were derived without recourse to special constitutive as-
sumptions. They are valid for dissipative and nondissipative processes.

5. Con®gurational heating and laws of thermodynamics

Within a purely mechanical theory structural changes in a material body due to evolving defects are
determined by the con®gurational stresses, forces and momenta as discussed in detail in the previous
section. However, such structural changes in the material body are in general dissipative and therefore any
theory of continua with evolving defects should be based on the thermodynamics of irreversible processes.
It is then necessary to supplement our equations derived in the previous sections by formulating appro-
priate forms of the ®rst and second laws of thermodynamics, the balance law of energy and the principle
of irreversibility. For continua with microstructure, but without migration of defects, these two laws of
thermodynamics are given by Eqs. (2.11) and (2.14), respectively.

Within the context of classical continua (continua without microstructure), the laws of thermodynamics
in the presence of evolving defects were considered by Fried and Gurtin (1996). They introduced the
con®gurational heating Q�X; t� and the associated con®gurational entropy ¯ux j�X; t� assumed in the form
j � hÿ1Qn, which are de®ned byZ

oR�t�
Qn � uda;

Z
oR�t�
�hÿ1Qn� � uda; �5:1�

respectively. Here h�X; t� denotes the absolute temperature, and u�X; t� is the velocity of oR�t� de®ned by
Eq. (3.2). Using these ®elds Fried and Gurtin (1996) formulated the balance of energy and the principle of
irreversibility for an arbitrary control region R�t� evolving in the reference con®guration of the body.

In the case of continua with microstructure the con®gurational heating should be of two kinds, the
con®gurational heating Q�X; t� resulting from the interactions of the evolving defects with the bulk material
of the body and the con®gurational microheatings QA�X; t�, A � 1; 2; . . . ;N , resulting from the interactions
of the evolving defects with the ®ne structure of the material body, which is described by N directors. These
con®gurational heatings are characterized by
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Z
oR�t�
�Qn � u� QAn � uA�da: �5:2�

Accordingly, the law of energy balance (2.11) rewritten for the evolving test region R�t� taking into account
Eq. (5.2) reads

d

dt

Z
R�t�

qedv

(
� K�R�t��

)
� P�R�t�� �

Z
R�t�

qr dvÿ
Z

oR�t�
�q � n� Qn � u� QAn � uA�da �5:3�

with the kinetic energy K�R�t�� and the total mechanical power W�R�t�� of the evolving test region given by
Eqs. (2.12) and (4.10), respectively.

In consistency with Eq. (5.2) we next assume the con®gurational macro- and micro-entropy ¯uxes in the
form j � hÿ1Qn and jA � hÿ1QAn, A � 1; 2; . . . ;N , leading to the total con®gurational entropy ¯uxZ

oR�t�
f�hÿ1Qn� � u� �hÿ1QAn� � uA�gda: �5:4�

With Eq. (5.4) the principle of irreversibility (2.14) rewritten for the evolving test region takes the form

d

dt

Z
R�t�

qgdv P
Z

R�t�
qhÿ1r dvÿ

Z
oR�t�
f�hÿ1q� � n� �hÿ1Qn� � u� �hÿ1QAn� � uAgda �5:5�

provided that the assumption (2.15) holds.
Both principles of thermodynamics must be invariant with respect to the reparametrization of the

boundary oR�t� of the evolving test region. Keeping in mind that uA � GAu, the expression (5.2) can be
given asZ

oR�t�
�Qn� QAGT

An� � uda; �5:6�

and correspondingly the con®gurational entropy ¯ux (5.4). With the use of the transport theorem the
principle of irreversibility (5.5) can be obtained in the ®nal formZ

R�t�
q _gdv P

Z
R�t�

qhÿ1r dvÿ
Z

oR�t�
hÿ1q
ÿ � � n� � hÿ1 Q1

ÿ � QAGT
A ÿ qg1

�
n � u	da: �5:7�

The invariance with respect to the reparametrization implies furthermore that

hÿ1�Q1� QAGT
A ÿ qg1� � 0; �5:8�

and in the absence of microstructure,

Q � qg: �5:9�
The result (5.9) was ®rst derived by Fried and Gurtin (1996).

We want to point out that the speci®c form (5.8) of the con®gurational heating and its reduced form (5.9)
in the case of continua without microstructure have been derived here independently of particular con-
stitutive assumptions.

6. Constitutive equations

The results of the previous section complete the set of general principles of thermodynamics for continua
with microstructure and evolving macrodefects and microdefects. They consist of the balance law of mass
(2.5), the balance law of macromomentum (2.6), the balance laws of micromomenta (2.7), the balance law
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of moment of momentum in the form either (2.8) or (2.9), the balance law of con®gurational macromo-
menta and micromomenta (4.1) and (4.2), the balance law of energy (5.3) and the principle of irreversibility
(5.7). These laws must be satis®ed for all kinds of continua with microstructure and all kinds of contin-
uously distributed and evolving defects. However, these ®eld equations derived from the principles of
thermodynamics do not su�ce to determine the ®eld variables appearing in them. They must be supple-
mented by a suitable set of constitutive equations de®ning particular classes of materials and their inter-
actions with defects evolving in the material.

In order to formulate the constitutive equations various ®eld variables of the balance laws of ther-
momechanics should be grouped according to the role they play within the considered theory. In general,
the variables which are regarded as data of the problem, consist of the set

�q; f; fA; r�: �6:1�

The unknown independent ®eld variables, which must be determined from the solution of the problem
are

�x; dA; h�; �6:2�

while the unknown dependent ®eld variables consisting of

�T; hA;TA; q;w; g� �6:3�

must be given by the constitutive equations in terms of the independent ®eld variables (6.2). In the presence
of evolving defects there are additionally con®gurational ®elds consisting of the con®gurational macrostress
tensor C and the con®gurational microstress tensors CA, the con®gurational momenta p and pA, and the
con®gurational intrinsic stress vectors f and fA. The con®gurational macrostress and microstress tensors are
given by the generalized Eshelby relation

C�GT
ACA � fqwÿ 1

2
q�v � v� aABwA � wB�g1ÿ �FTT� FT

ATA�; �6:4�

while the con®gurational momenta p and pA are determined by

p�GT
ApA � ÿ FTp

ÿ � FT
ApA
�
; �6:5�

where the macromomentum p and the micromomenta pA are given by Eq. (2.10). On the other hand,
the con®gurational inhomogeneity forces f and fA are indeterminate in the absence of con®gurational
changes, but otherwise they must be determined by the constitutive equations that govern the kinetics
underlying such changes. In view of Eqs. (6.4) and (6.5) the constitutive equations for the intrinsic
con®gurational forces can be obtained from the local form of the balance of con®gurational forces given
as

div�C�GT
ACA� � f�GT

AfA � _p�GT
A _pA: �6:6�

It is now seen that the complete set of constitutive equations must be formulated for the ®eld variables (6.3)
in terms of the independent variables (6.2).

In general, the constitutive functions are admitted to depend on the independent ®eld variables including
their spatial and time derivatives of any order. However, the formal theory of constitutive equations im-
poses certain restrictions on the admissible form of the constitutive functions. In order to illustrate some
essential aspects, we consider here constitutive equations of the following form:
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T � T̂�F; dB;rdB; _dB; h;rh; X�;
TA � T̂A�F; dB;rdB; _dB; h;rh; X�;
kA � k̂A�F; dB;rdB; _dB; h;rh; X�;
W � Ŵ�F; dB;rdB; _dB; h;rh; X�;
q � q̂�F; dB;rdB; _dB; h;rh; X�;
g � ĝ�F; dB;rdB; _dB; h;rh; X�;

�6:7�

where W � qw denotes the free energy measured per unit volume of the reference con®guration. The re-
striction implied by the balance law of (marco)-angular momentum and by the reduced dissipation in-
equality leads to

�oFŴÿ T̂� � _F� �odAŴÿ k̂A� � _dA � �ordAŴÿ T̂A� � r _dA � �o _dA
Ŵ� � �dA

� �ohŴÿ ĝ� _h� �orhŴ� � r _h� hÿ1q � rh6 0 �6:8�
for every admissible thermodynamical process (in the quasi-static case the microinertia terms may be
omitted). It is seen now, that the free energy function Ŵ may neither depend on _dA nor on rh, i.e. the most
general ®rst order form of the free energy is

W � Ŵ�F; dA;rdA; h�: �6:9�
Moreover, the constitutive functions for the macrostress tensor T and the microstress vector TA are
completely determined by the free energy function, i.e.

T � T̂�F; dB;rdB� � oFŴ�F; dB;rdB; h�;
TA � T̂A�F; dB;rdB� � ordAŴ�F; dB;rdB; h�;

�6:10�

and the entropy is given by

g � ĝ�F; dB;rdB; _d; h� � ohŴ�F; dB;rdB; _d; h�: �6:11�
Thus, only the intrinsic microstress kA can depend on _dA, and the most general ®rst order constitutive
equation for kA has the form

kA � odAŴ�F; dB;rdB; h� � k
A�F; dB;rdB; _dB; h�; �6:12�

where the constitutive function k
A�F; dB;rdB; _dB� must satisfy the following restriction:

k
A�F; dB;rdB; _dB� � _dC P 0: �6:13�

The constitutive relations for the con®gurational forces can now be obtained from Eq. (6.6), which can be
rewritten as

f�GT
AfA � _p�GT

A _pA ÿ div�C�GT
ACA�; �6:14�

where

C�GT
ACA � fŴÿ 1

2
q�v � v� aABwA � wB�g1ÿ �FTT̂� FT

AT̂A�; �6:15�
with the constitutive functions for Ŵ, T̂ and T̂A given by Eqs. (6.9) and (6.10), respectively. Thus, substi-
tuting Eqs. (6.9) and (6.10) into Eq. (6.15) and subsequently into Eq. (6.14) and performing the required
di�erentiation the constitutive relation for the inhomogeneity forces f and fA are obtained.
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The constitutive equations derived above are restricted further by the principle of material frame-
indi�erence and possible material symmetries. The ®nal form of such constitutive equations can be obtained
then by standard procedures.

7. Discussion and closing remarks

In this paper we present a framework for the analysis of continua with microstructure and evolving
defects on the macrolevel and microlevel. The balance laws for deformational and con®gurational macro-
forces and microforces are derived and the ®rst and second law of thermodynamics are presented taking
into account inertia e�ects and the dissipation of the evolving marcodefects and microdefects. To close the
set of equations, which enables the analysis of continua with defect evolution, we present ®nally the most
general form of the ®rst order constitutive equations.

Within the framework of this paper various special models of continua with microstructure and evolving
defects can be obtained by introducing simplifying assumptions concerning the number of the directors and
the type of their deformation according to the class of materials under consideration. In this way e.g.
Cosserat continua and continua with three deformable directors, representing the orientation of the crystal
lattice, can be derived for problems with changing microstructure and migration of defects on the mac-
rolevel and microlevel.

Further investigations should take into account the evolution of distinguished cracks on singular sur-
faces (singular lines in the two-dimensional case). Also the derivation of phenomenological damage models
from the presented microtheories by introducing appropriate plastic and/or damage potentials should be
considered.

Acknowledgements

The authors gratefully acknowledge the ®nancial support of Deutsche Forschungsgemeinschaft (DFG)
under contract no. SFB 398-A7.

References

Ariman, T., Turk, M.A., Sylvester, N.F., 1973. Microcontinuum ¯uid mechanics ± review. International Journal of Engineering

Sciences 11, 905±930.

Beatty, M.F., Cheverton, K.J., 1976. The basic equations for a grad 2 material viewed as an oriented continuum. Archiwum Mechaniki

Stosowanej 28, 205±213.

Bilby, B.A., Bullough, R., Smith, E., 1955. Continuous distributions of dislocations: a new application of the method of non-

Riemannian geometry. Proceedings of the Royal Society of London A231, 263±273.

Capriz, G., Podio-Guidugli, P., 1977. Formal structure and classi®cation of theories of oriented materials. Annali di Matematica Pura

ed Applicata 65, 17±39.

Cermelli, P., Fried, E., 1997. The in¯uence of inertia on the con®gurational forces in a deformable solid. Proceedings of the Royal

Society of London A453, 1915±1927.

Chaboche, J.L., 1988a. Continuum damage mechanics: Part I ± General concepts. Journal of Applied Mechanics 55, 59±64.

Chaboche, J.L., 1988b. Continuum damage mechanics: Part II ± Damage growth, crack initiation, and crack growth. Journal of

Applied Mechanics 55, 65±72.

Ericksen, J.L., 1961. Conservation laws for liquid crystals. Transactions of the Society of Rheology 5, 23±34.

J. Makowski, H. Stumpf / International Journal of Solids and Structures 38 (2001) 1943±1961 1959



Ericksen, J.L., Truesdell, C., 1958. Exact theory of stress and strain in rods and shells. Archive for Rational Mechanics and Analysis 1,

295±323.

Eshelby, J.D., 1951. The force on an elastic singularity. Philosophical Transactions of Royal Society of London A224, 87±112.

Eshelby, J.D., 1970. Energy relations and the energy-momentum tensor in continuum mechanics. In: Kanninen, M.F., Alder, W.F.,

Rosen®eld, A.R., Ja�e, R.I. (Eds.), Inelastic Behavior of Solids, McGraw-Hill, New York.

Fried, E., Gurtin, M.E., 1996. A phase-®eld theory of solidi®cation based on a general anisotropic sharp-interface theory with

interfacial energy and entropy. Physica D 91, 143±181.

Freund, L.B., 1990. Dynamic Fracture Mechanics. Cambridge University Press, Cambridge, MA.

Green, A.E., Naghdi, P.M., 1995. A uni®ed procedure for construction of theories of deformable media. II. Generalized continua.

Proceedings of the Royal Society of London A448, 357±377.

Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth. Journal Engineering Materials and

Technology 99, 2±15.

Gurtin, M.E., 1994. The characterization of con®gurational forces. Addendum to the dynamics of solid±solid phase transitions 1.

Coherent interfaces. Archive for Rational Mechanics and Analysis 126, 387±394.

Gurtin, M.E., 1995. The nature of con®gurational forces. Archive for Rational Mechanics and Analysis 131, 67±100.

Gurtin, M.E., Podio-Guidugli, P., 1992. On the formulation of mechanical balance laws for structured continua. Zeitschrift f�ur

angewandte Mathematik und Physik 43, 181±190.

Gurtin, M.E., Podio-Guidugli, P., 1996. Con®gurational forces and the basic laws for crack propagation. Journal of the Mechanics

and Physics of Solids 44, 905±927.

Hansen, N.R., Schreyer, H.L., 1994. A thermodynamically consistent framework for theories of elastoplasticity coupled to damage.

International Journal of Solids and Structures 31, 359±389.

Hertzberg, R.W., 1996. Deformation and Fracture Mechanics of Engineering Materials. Fourth edition, Wiley, New York.

Kachanov, L.M., 1986. Introduction to Continuum Damage Mechanics. Martinus Nijho� Publishers, Dordrecht.

Krajcinovic, D., 1989. Damage mechanics. Mechanics of Materials 8, 117±197.

Krajcinovic, D., Fonseka, G.U., 1981. The continuous damage theory of brittle materials. Part 1. General theory. Journal of Applied

Mechanics 48, 809±815.

Kr�oner, E., 1960. Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Archive for Rational Mechanics and

Analysis 4, 273±334.

Le, K.C., Stumpf, H., 1996a. Nonlinear continuum theory of dislocations. International Journal of Engineering Sciences 34, 339±358.

Le, K.C., Stumpf, H., 1996b. A model of elastoplastic bodies with continuously distributed dislocations. International Journal of

Plasticity 12, 611±627.

Le, K.C., Stumpf, H., 1996c. On the determination of the crystal reference in nonlinear continuum theory of dislocations. Proceedings

of the Royal Society of London A452, 359±371.

Le, K.C., Sch�utte, H., Stumpf, H., 1999. Determination of the driving force on a kinked crack. Archive of Applied Mechanics 69,

337±344.

Lubarda, V.A., Krajcinovic, D., 1995. Some fundamental issues in rate theory of damage-elastoplasticity. International Journal of

Plasticity 11, 793±797.

Lubarda, V.A., Krajcinovic, D., Mastilovic, S., 1994. Damage model for brittle elastic solids with unequal tensile and compressive

strengths. Engineering of Fracture Mechanics 49, 681±697.

Maugin, G.A., 1993. Material Inhomogeneities in Elasticity. Chapman and Hall, London.

Maugin, G.A., 1995. Material forces: concepts and applications. Applied Mechanics Review 48 (5), 213±245.

Maugin, G.A., Trimarco, C., 1992. Pseudo-momentum and material forces in nonlinear elasticity: variational formulations and

application to brittle fracture. Acta Mechanica 94, 1±28.

Maugin, G.A., 1997. Thermomechanics of inhomogeneous±heterogeneous systems: application to the irreversible progress of two- and

three-dimensional defects. ARI 50, 41±56.

Maugin, G.A., 1998. On the structure of the theory of polar elasticity. Phil. Trans. Roy. Soc. London A356, 1367±1395.

Naghdi, P.M., Srinivasa, A.R., 1993. A dynamical theory of structured solids. I. Basic developments. Philosophical Transactions of

Royal Society of London A345, 425±458.

Naghdi, P.M., Srinivasa, A.R., 1994. Characterization of dislocations and their in¯uence on plastic deformation in single crystal.

International Journal of Engineering Sciences 32, 1157±1182.

Peach, M.O., Koehler, J.S., 1950. The forces exerted on dislocations and the stress ®elds produced by them. Physical Review 80,

436±439.

Simo, J.C., Ju, J.W., 1987. Strain-and stress-based continuum damage models, I. Formulation. International Journal of Solids and

Structures 23, 821±840.

Stumpf, H., Le, K.C., 1990. Variational principles of nonlinear fracture mechanics. Acta Mechanica 83, 25±37.

Stumpf, H., Le, K.C., 1992. Variational formulation of the crack problem for an elastic±plastic body at ®nite strain. Zeitschrift f�ur

angewandte Mathematik und Mechanik 72, 387±396.

1960 J. Makowski, H. Stumpf / International Journal of Solids and Structures 38 (2001) 1943±1961



Stumpf, H., Saczuk, J., 2000. A generalized model of oriented continuum with defects. Zeitschrift f�ur angewandte Mathematik und

Mechanik 80, 147±169.

Toupin, R.A., 1964. Theories of elasticity with couple-stress. Archive for Rational Mechanics and Analysis 17, 85±112.

J. Makowski, H. Stumpf / International Journal of Solids and Structures 38 (2001) 1943±1961 1961


